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Improved Control Design Variable Linking for Optimization of
Structural/Control Systems

Ik Min Jin* and Lucien A. Schmitt
University of California, Los Angeles, Los Angeles, California 90024

A method is presented to integrate the design space for structural/control system optimization problems in the
case of linear state feedback control. To make the truly simultaneous optimization of structural/control systems
tractable, without increasing the number of control design variables, the conventional structural design variable
linking idea is extended to the control system feedback gain matrix. In this paper a new control design variable
linking scheme based on representing the feedback gain matrix as the linear combination of component matrices
corresponding to different modes is introduced. The original nonlinear mathematical programming problem
based on a finite element formulation and linear state feedback is replaced by a sequence of explicit approximate
problems exploiting various approximation concepts such as structural and control design variable linkings,
temporary constraint deletion, and first-order Taylor series expansion of nonlinear behavior constraints in terms
of intermediate design variables. Examples that involve a variety of dynamic behavior constraints (including
constraints on closed-loop eigenvalues, peak transient displacements, and peak actuator forces) are effectively
solved by using the improved control design variable linking scheme presented.

I.  Introduction

ARGE space structures usually have low stiffness and low
damping characteristics due to their light weight require-
ments. To suppress the vibration and maintain the strict shape
specifications, it is necessary to enhance stiffness and/or
damping of the structures through some type of active con-
trols.! In Refs. 2 and 3 it has been shown that slight structural
modification can lead to a considerable improvement in the
control system performance, and there has been a consider-
able effort to integrate the design optimization of structures
and control systems to achieve a better performance and di-
rectly handle cross coupling effects and dynamic interactions
between the two systems. ) ’
Most of this research has focused on linear control laws
based on output feedback or state feedback. In the case of
output feedback, several studies have been made in which the
structural dimensions and the control gains are treated as
strictly independent design variables in optimization.*’ On the
other hand, in the case of full state feedback control, a se-
quential approach is usually adopted in' which the control
gains are determined by solving Riccati equations correspond-
ing to the changing structural system during design itera-
tions.®!! When the gain variables are determined by solving
Riccati equations for a fixed plant, they implicitly become
dependent design variables and the resulting design optimiza-
tion is constrained to a subspace where the optimality condi-
tions of a control subproblem are satisfied. The tendency to
subordinate gains to a dependent variable status can be at-
tributed to the fact that for system models with a large number
of degrees of freedom, the feedback gain matrix [H] contains
prohibitively large numbers of independent design variables
(i.e., M x 2N control design variables, where M is the number
of actuators and N is the number of degrees of freedom in the
system model).
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In Ref. 12, both the structural cross-sectional dimensions
(CSDs) and control gains were treated as strictly independent
design variables in the case of linear state feedback control.
True design space integration was achieved using relatively
small numbers of independent control system design variables
by introducing several control design variable linking schemes
based primarily on column-wise and row-wise linking in the
gain matrix. In the current paper, alternative block-type con-
trol variable linking schemes are introduced.

II. Problem Statements
The simultaneous structural/control optimization problem
is formulated as a general nonlinear inequality constrained
mathematical programming problem as follows:
Find Y to minimize F(Y) subject to

Jj=1,..., NCON

G;(Y) =0, M

with bounds

Yi< Y,

£ = YY, i=1,...,NDV

where NDV is the total number of design variables, ¥ =
Yy, Yo, ..., YnpvlTis an NDV x 1 design variable vector, F
is a scalar objective function, G is the jth behavior constraint,
NCON is the total number of behavior constraints, and Y7
and Y are side constraints on the ith design variable, respec-
tively.

Both structural and control design variables are included
independently in the design variable vector Y. The total mass
of the system has been chosen as the objective function, and
constraints on 1) dynamic stability (real parts of closed-loop
cigenvalues), 2) damped frequencies (imaginary parts of
closed-loop eigenvalues), 3) peak transient responses, and 4)
peak transient control forces are included in this study.

III. Structural/Control System Description
The second-order equations of motion are
M1{G} + [Clig} + [Kl{g} =1bl{u} + [e]l{f} (@)
where {g} is an N X 1 vector of nodal degrees of freedom
(DOF); {g} and {g} are first and second time derivatives of

{q}; [M], [K], and [C] are N. x N mass, stiffness, and damp-
ing matrices, respectively; {u} is an M X 1 actuator force
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vector; M is the number of actuators; {f} is an L X 1 vector
of external disturbances; L is the number of external distur-
bances making up a single load condition; and [b] and [e] are
N X Mand N X L coefficient matrices consisting of the direc-
tional cosines, which relate actuator and disturbance forces to
the nodal DOFs, respectively.

It is assumed that the preassigned damping inherent to the
structure can be represented by a proportional damping ma-
trix, which is a linear combination of the structural mass and
stiffness matrices, i.e.,

[C] = cp [M] + cx[K], Cpr, Cx cOnstants 3)

Equation (2) can be transformed into the first-order state
space equation as follows:

{x} =1A4,1{x} + [Bl{u} + [E]{f} “

where

{(x17=1{qg}" {q}71

[A]:[ [0 i ]
S I 75 R IS R P A i (o)

[B]=[ [0] ] [E]=[ [0] ]
M} [b] M1~ [e]

The control input vector {u} is to be determined under the
assumption that all of the states (components of {x}) are
available, that is

(u} = —[Hl{x} = — [[le [Hy]] {Z} )

where [H] is the M X 2N feedback gain matrix and [H,] and
[H,] are the M X N position and velocity parts of [H ], respec-
tively. The closed-loop state equation becomes

{x} =[AHx} + [E1LSf) ©)
where the closed-loop system matrix [A] is

(4] =[4,] - [BIIH]

IV. Generation of Basis Matrices for Improved
Control Design Variable Linking
Initial control gains are obtained by solving a set of 2 X 2
Riccati equations corresponding to the initial structure (see
Ref. 12). The solution procedure is reviewed in the following
paragraphs.
First find the natural frequencies and normal modes of

M1{g} + [K1{g} = {0} Q)]
that is, solve the standard eigenproblem
o IM1{v;} = [K1{v:), i=1,2,...,r ®
and normalize the modes {v;} so that
fviiTIM] (v} = 65, ih,j=1,2,...,r o

where §;; is the Kronecker data, and r is the number of normal
modes to be used in the decoupled Ricatti equation solution
(r = N). Note that r should be at least equal to or greater than
the number of structural modes to be controlled. Let

{q} =1V]{z} (10)

where the ith column of the N X r normal mode matrix [V] is
the ith normal mode {v;} and {z} = lz;, 25,..., z-17 is an
r x 1 normal coordinate vector. Substituting Eq. (10) into Eq.
(2) (assuming {f} = {0}) and premultiplying by [V]7 results in
r sets of scalar equations as follows:

Zi+ o + iz = (vi}TIb1{u)

- {v,-1T[b]<{u}<°+ ) {uw)) ()
k#1

where

{u}mz_{[ﬁp](l)[ﬁv](o}g;‘}, i=12,...,r (12)

1.

The vector {u ]} is an M X 1 control vector that contains only
the ith normal mode components (z; and z;). Furthermore,
{H,} and {H,}? are M x 1 feedback gain vectors which
relate {u}® with z; and %;, tespectively. It is noted that
¢; = Cy + cxw?, in view of the proportional damping assump-
tion embodied in Eq. (3).

Equation (11) can be rewritten as

Zi + ¢z + iz = (vi)TIb1{u )0 + (£}O 13)

where

9= w71 X (u}®
ki

Note that the coupling terms {f}? contain modal components
other than the /th mode and can be treated as disturbance
forces for the ith modal equation. To determine the optimal
control {u}®, Eq. (13) can be transformed into the standard
first-order state space form neglecting the coupling terms as
follows:

(i} =43 {w} + [Bi]{u}?

B 0 1 q_ [0]
A= [—w? —cz]’ (5= [{Vi}T[bJ

where {w;} = lz; z; 17T is the 2 X 1 state vector, [4,] is the
2 X 2 system open-loop matrix, and [B;} is the 2 X M system
input matrix for the ith modal equation.

The performance index for the ith mode (PI;) is chosen as

(14)

0

PI; = E <[Wi}T[Qi]{Wi} + {u}(”T[Ri]{u}(”> s (15)

where [Q/] = diag[Qf;, 03] (@1}, 03, = 0) is a 2 x 2 diagonal
weighting matrix for the ith state vector and [R;] = ;7] (1/]
is an M X M identity matrix, ; > 0) is a weighting matrix for
the ith modal control force vector. Then the ith control force
vector {u } can be determined from

(u}®= —~[RI'[BIT[P] {w;}?
! T i 1 T i s
= —— b1 {vilphz — — b1 {vi PRt 16)
Vi Yi
where the 2 X 2 positive semidefinite symmetric matrix

Pl i
[P]= [ ! ‘,-2}
P P

satisfies the 2 X 2 Riccati equation
[P1IA;] + [A17[P] + [Qi] - [P1IBAIR][BIT[P] = [0]
(a7
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which can be solved in closed form (see Appendix B of Ref.
13). By comparing Eq. (12) and Eq. (16), the /th feedback gain
vectors in normal coordinates can be obtained as follows:

P (2,00 =22 17y (8)

i

{(H,}® = [b]T (v},

Now assume that the control vector {u} is the sum of the
various {u}®, each of which is calculated independently ne-
glecting the coupling term [second term on the right-hand side
of Eq. (11)], i.e.,

(u)= ¥ (u)o = —[[ii,,] (H, 1] {j (19)

i=1

where [I:Ip] and [H,] denote M X r position and velocity gain
matrices in normal coordinates, the columns of which are
{H,}Y and {H,}9, respectively. Then using the relation {z)
= [V]7[M}{q} [premultiply Eq. (10) by [V]7[M] and note
that [V]7[M][V] = [I] in view of Eq. (9)], the initial feedback
gain matrix in physical coordinates [/H°] can be recovered as
follows:

He] = [[H,‘,’] [Hé’]] (20)
H21 = 1H,11V17M] @n
[H]=H,1V]ITIM] (22)

where superscripts 0 denote initial feedback gain matrices.

In Ref. 12 several linking schemes for the feedback gain
matrix were introduced. They were based on 1) separation of
velocity and position parts of the gain matrix, 2) various row
and column schemes corresponding to actuator and degree of
freedom linking, and 3) linking schemes based on only allow-
ing changes in various sets of velocity gains. Combining the
foregoing ideas led to numerous linking schemes with distinct
sets and various numbers of independent control system de-
sign variables (CDV), ranging from 1 to M x 2N (see Table 1
of Ref. 12).

In this paper a new approach to linking of control design
variables is introduced and assessed. The initial feedback gain
matrix obtained by solving r sets of 2 X 2 Riccati equations
[Egs. (20-22)] can be rewritten in the following form:

r

[H°] = [[H,?] [Hf]] =X [[H,?]“’ [Hf](‘)} = T (590

i=

(23)
[HS] = E (H,}0 (v} T[M] = E [H210 24)
= ¥ (2,30 (v)TIM] = T (H10 @5)

i=1

where superscripts (7) indicate that these quantities correspond
to the ith Riccati equation. The foregoing equations imply
that the [H2]? and [H7]1) or the [H}¥) may be interpreted as
basis matrices, which can be used to generate the initial gain
matrix. This use suggests that the actual feedback gain matrix
can be well approximated as a linear combination of these
basis matrices, namely

4

[H]= X «lH)® (26)

i=1
or

,

[H1= ¥ [a,-[H:1<° a,~+,[H;’1<'>] @7

i=

The whole feedback gain matrix can be linked [Eq. (26)], or

the position and velocity parts of the gain matrix can be block
linked separately [Eq. (27)]. During the optimization the par-
ticipation coefficients «; are treated as independent design
variables along with the structural sizing variables. It should
be noted that these participation coefficients can be further
linked with each other. It is important to recognize that in this
work the closed-form solution of the decoupled Riccati equa-
tions (see Appendix B, Ref. 13) is used exclusively for the
purpose of generating basis matrices [Eqs. (26) and (27)].

V. Optimization

Various approximation concepts such as structural and con-
trol design variable linking, temporary constraint deletion,
and intermediate design variables'“'’ are used to replace the
original design optimization problem by a series of explicit
approximate problems. Linear, reciprocal, or hybrid approxi-
mations (see Refs. 16 and 17) can be generated with respect to
either direct or intermediate design variables, even though the
approximate design optimization problems are always solved
in an integrated design space that spans the independent struc-
tural CSDs and the participation coefficients of the linked
control gains. Each approximate optimization problem has its
own lower and upper bounds on the design variables. These
bounds are determined by the move limits or the original side
constraints [see Eq. (1)], whichever is most restrictive. For
frame elements it is known that the section properties A4, /,,
I, and J are a good choice for intermediate design variables.
This knowledge follows from the fact that the elements of the
stiffness and the mass matrices are linear functions of these
section properties. Control design variables are used directly
in the generation of the approximate problems because the
system matrices are linear functions of the gains.

With the information acquired from the analysis and sensi-
tivity analysis phase (see Ref. 13 for details) each approximate
optimization problem can be formulated as follows:

Find Y to minimize F[X(Y)] subject to

G XM =0, J€Qr (28)

with bounds

Y, <Y <Y, i=1,...,NDV

where Y is a vector of design variables NDV x 1), X(Y)is a
vector of intermediate design variables, F(-) is an approximate
objective function, Gj (-) is the jth approximate constraint, ¥;
and Y; are lower and upper bounds for the ith design variable
(during solution of the current optimization problem), and Qx
is the retained set of constraints for the current approximate
problem. For all of the numerical examples presented in this
paper, the following approximation options are employed.
Linear approximation of F(-) is used with respect to interme-
diate structural design variables (4, I,, I,, J), which is exact
when the mass is minimized. When generating the approxi-
mate constraint functions Gj(-), linear approximation is cho-
sen with respect to control design variables, whereas the hy-
brid approximation is used with respect to structural
intermediate design variables.

VI. Numerical Results

The control augmented structural optimization solution
method described in the preceding sections has been imple-
mented on the IBM 3090 mainframe computer at the Univer-
sity of California, Los Angeles. CONMIN! is used as the
optimizer. Numerical results that illustrate effectiveness of
various block-type control design variable linking schemes are
presented here.

Example 1: Antenna Structure

An idealized antenna structure is chosen as the first example
to be presented here. It consists of eight aluminum beams
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(E=73%x10° N/cm?, p=2.77x 1073 kg/ecm?, v=0.325)
that have thin-walled hollow-box-beam cross sections (see Fig.
1). This structure is constrained to move vertically (¥ direc-
tion) only, so each nodal point has 3 DOF (translation in the
Y direction and rotation about the X and Z reference axes
shown in Fig. 1) resulting in the total 18 DOF (N = 18). Nodal
point coordinates and the corresponding degrees of freedom
are given in Table 1. Four translational actuators (M = 4)
weighing 4 kg each are attached to nodes 3, 5, 6, and 7. These
actuators are oriented so that the force they generate acts in
the vertical direction (degrees of freedom 4, 10, 13, and 16).
Two ramp-type transient loads are applied to node 3 at the
same time. One is a vertical force [fi(¢)] and the other is a
moment [ f5(¢)] about a line parallel to the X reference axis but
passing through node 3, which gives antisymmetric exitation.
These loads are given as follows:
fi(®) = 333.3¢ N, f(t)=10.0 X fi(t) N-cm

for 0=t =<0.3s, and f1(t) = f5(t) =0 for ¢t > 0.3 s (sec Fig.
1). Transient response is considered for the time interval 0 < ¢
=<2 s, and 20 out of 36 complex modes are used to calculate

[[_\

1000 cm

S (N

100

B

Time(sec.)
External Load

Box Beam Cross Section

Fig. 1 Antenna structure.
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Fig. 2 Comparison of initial closed-loop eigenvalues, antenna structure.

Table 1 Nodal point data, antenna structure

Degrees of freedom

Node Coordinates, cm Y b% Z
no. X Y V4 trans. rot. rot.
1 0 0 0 _ —_ _
2 1000 0 —500 1 2 3

3 1000 0 0 4 5 6

4 1000 0 500 7 8 9

5 1500 0 — 500 10 11 12
6 1500 0 0 13 14 15

7 1500 0 500 16 17 18

the peak response values. Passive damping is assumed to be
zero (¢ = cx = 0). This assumption tends to be conservative
for transient response constraints, and it is further justified by
observing that the magnitude of damping inherent to the
structural system is likely to be small compared with that
introduced by an active control system.

The design objective to be minimized is the total mass of the
system including the fixed actuator masses as well as the
variable structural mass. Flange and web thicknesses are con-
strained to be the same, so that there are three structural
design variables for each finite element (B, H, and T). Struc-
tural linking is also used to make the structure remain symmet-
ric with respect to the XY plane, which results in the total 15
independent structural design variables. The initial structure is
uniform (B = H =20.0 cm, T = 0.5 cm), and the side con-
straints are 10.0cm < B, H <25.0cm, and 0.1 =T < 1.0 cm.

"Move limits of 20 to 70% for both structural variables and
control variables are used. The convergence criteria used in
this example is that for two consecutive iterations the relative
difference in the objective function should be less than 0.1%.
In all cases behavior constraints are imposed on 1) the real
part of all of the retained complex modes (0; = —0.5); 2) the
fourth and fifth damped frequencies (ws, = 8.0 Hz, wy, =
9.25 Hz); 3) the peak displacement of nodes 2, 4, 5, and 7
(g;(Ol =1.0 cm, i =1, 7, 10, and 16); and 4) the peak
actuator force (lu;(z)| <8.5 N, j =1, 2, 3, and 4). Initial
startup gains are computed by solving 10 sets of 2 X 2 Riccati
equations (r = 10). The 2 X 2 state weighting matrices are set
to be [Q] = diag[w?, 1],i =1, 2, ..., r, so that the first term
of Eq. (15) represents a total (strain and kinetic) modal en-
ergy, and the control weighting coefficients ; are chosen to be
1/400. In Fig. 2, the initial closed-loop eigenvalues (\; =
0; + jwy,) obtained by solving 10 sets of 2 X 2 Riccati equa-
tions are compared with those obtained from a full-order
Riccati equation solution, and, as can be seen from the plot,
these two solution methods give almost the same values for the
lowest 10 modes.

At the initial design constraints on the real part of the eighth
closed-loop eigenvalue, two of the damped frequencies are vi-
olated (og = —0.025 > 0.5, wy, = 6.74 < 8.0 Hz and wy, =
7.61 < 9.25 Hz). Furthermore, three of the peak control force
constraints are initially violated [luy(¢)! .= 8.76 > 8.5 N,
lus(t) pax = 9:26 > 8.5 N, and luy(t) | nax = 9.33 > 8.5 N],
but all of the peak displacement constraints are satisfied.

Case 0, No Control Design Variable Linking

This case does not use any control design variable linking
scheme, therefore, 15 structural cross-sectional dimensions
and all 144 (= M x 2N) elements of the feedback gain matrix
are treated as independent design variables. Since this case has
full design space freedom, the solution mass of this case is
expected to be the lowest value for the entire example. The
iteration history and the final structural design are given in
Tables 2 and 3, respectively. At the final design all of the
constraints are satisfied and the critical constraints are 1) the
tenth real part of closed-loop eigenvalues (oy0); 2) the fourth
damped frequency (wy,); 3) the peak displacements at nodes 5
and 7 (g0 and ¢y¢); and 4) the peak control forces of all four
actuators (uy, u,, 43, and u,).
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Cases 1-10, Linking on [H]

Cases 1-10 select participation coefficients o; of [H°]? [see
Eq. (26)] as design variables. These «; are further linked so
that in each case the number of independent control design
variables is different. The basic scheme employed here is to
treat the first (K — 1) variables «, ...,0x_ as independent
and then link all of the remaining variables oy = agx.,
= .-+ = o SO that the total number of independent control
design variables after linking is K. For example, when K = 1
there is only one independent design variable after linking,
since oy = = - = oo, When K = 2 there are two inde-
pendent design variables after linking, namely «; and o
= a3 = +-+ = ayg. Finally, when K = 10 there will be 10 inde-
pendent design variables after linking, namely the participa-
tion coefficients of the 10 basis matrices in Eq. (26).

Iteration histories and final structural designs for cases 1-10
are given in Tables 4 and 5. In Fig. 3, iteration histories of
some cases are graphically compared with each other and with
case 0, which serves as the reference solution.

Table 2 Iteration history,
antenna structure, case 0

Analysis Total mass, kg
1 502.14
2 462.20
3 345.34
4 254.17
5 213.91
6 184.11
7 174.34
8 168.93
9 169.35

10 165.61

11 164.42

12 164.08

13 164.17

14 163.99

15 163.76

16 163.20

17 163.10

18 163.11

Table 3 Final structural design, antenna structure, case 0
(cross-sectional dimensions, cm)

Element FElement Elements Elements Elements
1 2 3,4 5,6 7,8
B 25.002 25.002 23.24 25.002 19.31
H 25.002 25.002 25.002 25.002 25.002
T 0.1000b 0.1108 0.1000> 0.1935 0.1000b

*Indicates upper bound value. YIndicates lower bound value.
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Cases 11-20, Linking on [Hp) and [Hy]

Cases 11-20 are the same as cases 1-10 except that position
and velocity parts of the gain matrix are separated. Namely,
the o; of both [H21? and [H1? [see Eq. (27)] are candidates
for design variables, so that the maximum number of indepen-
dent control design variables after linking is doubled from 10
to 20. Iteration histories and final structural designs are given
in Tables 6 and 7 and Fig. 4.

Summary and Discussion

As the freedom in the design space is increased by choosing
more independent control design variables (from case 1 to case
10 and from case 11 to case 20), it can be clearly seen from the
results that the optimum mass decreases. Table 8 shows criti-
cal constraints (—0.03 < G; <0.0004) at the final designs.
Fourth damped frequency (w,,), peak displacement at node 7
(¢16), and peak control force at node 7 (u4) are critical in all
cases.

It is important to note that even with only one or two
independent control design variables (cases 1 and 11), the final
mass values obtained (206.06 and 204.16 kg) are about 15%
lower than the result reported in Ref. 8 (241.97 kg). This result
can be attributed to the fact that in Ref. 8 the control gains are
not independent design variables since, for any particular set
of structural design variables, they are determined from the
solution of a linear quadratic regulator subproblem.

( )* : Number of independent Control Design Variables

220
: A <& Case 1 (1)x
2104 “ -»- Case 2 (2)
Dot & Case 4 (4)
S oo .
2 200 % ~+ Case 6 (6)
ol S\, [vemnoo
_=
= — Case 0 (144)
=
o 1804
2
a
© 1704
160+

2 4 6 8 10 1TZ 14 16 18 20
Number of Analysis

Fig.3 Antenna structure iteration histories, cases 1-10.

Table 4 Iteration histories, antenna structure, cases 1~10 (total mass, kg)

Case 1 Case 2 Case 3 Case 4 Case § Case 6 Case 7 Case 8 Case 9 Case 10
Analysis (1% (2% (39 49 (59 (6% (7 (89 %9 (109
1 502.14 502.14 502.14 502.14 502.14 502.14 502.14 502.14 502.14 502.14
2 484.61 470.88 471.87 444,12 454.83 453.14 449.81 450.11 435.15 469.10
3 387.64 328.11 328.47 303.50 346.62 299.54 293.56 294.62 307.14 350.45
4 297.69 260.67 254.76 233.56 268.66 228.72 217.54 218.41 228.31 268.09
5 240.14 217.39 214.99 193.83 215.70 187.80 184.73 180.21 188.59 215.51
6 215.05 199.59 200.57 178.76 185.24 175.65 176.29 174.64 175.95 181.14
7 208.60 193.04 192.60 174.18 175.46 173.27 173.07 174.70 173.41 173.50
8 206.33 191.20 190.47 173.05 176.56 172.41 172.28 174,38 172.68 171.19
9 206.07 190.90 190.23 172.50 173.25 172.29 171.93 173.93 171.10 171.02
10 206.06 190.80 190.14 172.46 172.66 172.17 171.80 171.27 170.84 170.96
11 206.06 190.70 189.94 172.46 172.46 171.73 170.97 170.70 170.92
12 189.85 172.37 170.84 170.65
13 189.91 172.32 170.81

*Number of independent control design variables.
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( )* : Number of Independent Control Design Variables In Fig. 5 final masses are compared with the number of
220 Ty independent control variables. Compared with the results re-
-& Case 11 (2)* ported in Ref. 12, based on the column-wise or row-wise
linking schemes, the new block-type (basis matrix) linking
210+ A ~»- Case 12 (4) method introduced here gives much better results in the sense
Aedn Aea that with the same or fewer independent control design vari-
B0 & Case 13 (6) ables significantly lower final design mass can be obtained.
= + ~+ Case 17 (14) _
» v Example 2: Grillage Structure
p 1904 =} - Case 20 (20) The second example is the 4 X 6 planar grillage structure
= (see Fig. 6) that was studied in Refs. 5 and 8. It consists of a
ol v — Case 0 (144) lattice of 10 aluminum frame members placed on 2-ft centers
% 180 and cantilevered from two fixed supports by 2-ft-long flexible
® | s\ EE W beams (E = 10.5 x 10¢ psi, p = 0.11b/in.3, v = 0.3). Bach solid
a rectangular member is 2.0 in. wide (fixed) and has an initial
o 170 ‘ depth (variable) of 0.25 in. The members are oriented so that
g b2 the width dimensions lie in the plane of the structure (XZ
"""" v plane). The grillage is modeled using 40 finite elements, each
160 of which is 2 ft long, and the total number of DOF is 72 (3 per
node at 24 nodes). A small amount of passive damping
! ; é é 1'0 1'2 1; 116 1I8 2‘0 fcar = 0, cx = 0.00005, see Eq. (3)], which gives passive damp-
. ing ratios between 0.0059% (Ist mode) and 0.36% (20th
Number of AnaIySIs mode) to the uncontrolled initial structure, is assumed to exist.
Fig. 4 Antenna structure iteration histories, cases 11-20. Four torque actuators are placed to provide control torque in
Table 5 Final structural designs, antenna structure, cases 1-10 (cross-sectional dimensions, cm)
Element Element Elements Elements Elements Element Element Elements Elements Elements
Case 1 2 3,4 5,6 7,8 Case 1 2 3,4 56 7,8
B 25.002 25.002 19.62 25.002 15.51 25.002 25.002 18.72 25.002 21.03
H 1 25.002 25.002 25.002 25.002 25.002 6 25.002 25.002 25.002 25.002 25.002
T 0.1899 0.1000b 0.10000 0.2816 0.1000Y 0.1000Y 0.1107 0.1000P 0.2330 0.1000b
B 25.002 25.002 19.78 25.002 24.94 25.002 25.002 17.65 25.002 20.47
H 2 25.002 25.002 25.002 23.05 22.23 7 25.002 25.002 24.89 25.002 25.002
T 0.1830 0.1326 0.1000° 0.2103 0.1000V 0.1000° 0.1165 0.1000V 0.2318 0.1000b
B 25.002 25.002 20.03 25.002 22.86 25.002 25.000 14.95 25.002 23.42
H 3 25.002 25.002 25.002 23.37 21.94 8 25.002 25.002 23.00 25.002 25.002
T 0.1869 0.1413 0.10002 0.2102 0.10000 0.1073 0.1244 0.1000b 0.2203 0.1000b
B 25.002 25.002 20.90 25.002 20.51 25.002 25.002 14.62 25.002 22.12
H 4 25.002 25.002 25.002 25.00 25.00? 9 25.002 25.002 22.36 25.002 25.002
T 0.1000Y 0.1000b 0.1000° 0.2356 0.1000Y 0.1013 0.1319 0.1000° 0.2267 0.1000
B 25.002 25.002 18.85 25.002 23.70 25.002 25.002 19.96 25.002 20.29
H 5 25.002 25.002 25.002 25.002 25.002 10 25.002 25.002 25.002 25.002 25.002
T 0.1025 0.1036 0.1000° 0.2287 0.1000b 0.1000 0.1058 0.1000° 0.2296 0.1000°
*Upper bound value. bLower bound value.

Table 6 Iteration histories, antenna structure, cases 11-20 (total mass, kg)

Case 11 Case 12 Case 13 Case 14 Case 15 Case 16 Case 17 Case 18 Case 19 Case 20

Analysis (29) @? 1) (89 (109) (129 (143) (169 (18%) (203)
1 502.14 502.14 502.14 502.14 502.14 502.14 502.14 502.14 502.14 502.14
2 485.24 482.76 462.89 420.35 470.72 475.80 474.66 474.47 466.40 434.64
3 383.18 343.98 339.86 288.81 326.51 301.89 304.10 304.66 304.00 287.18
4 302.66 276.53 260.17 229.95 247.00 228.23 230.32 231.61 226.62 224.61
5 241.31 225.43 222.33 196.72 207.82 188.16 197.86 197.41 185.11 183.32
6 216.56 200.56 202.26 180.59 185.02 175.46 178.77 178.20 174.03 172.69
7 208.12 189.41 191.17 174.55 173.76 174.21 172.28 172.25 172.93 171.31
8 206.07 187.41 186.95 172.76 171.10 173.71 171.81 171.09 172.39 169.42
9 205.78 186.31 185.45 171.64 171.25 172.95 169.76 170.49 172.02 166.81

10 204.22 185.54 183.60 170.30 170.49 171.19 171.33 170.21 171.80 166.79

11 204.19 185.21 181.66 170.41 169.99 170.91 170.02 169.72 170.04 166.22

12 204.16 185.13 181.23 170.37 169.80 170.69 169.07 169.16 169.67 165.66

13 185.09 180.70 169.64 169.68 167.59 167.78 169.37 165.61

14 178.65 169.55 169.49 166.91 167.26 169.17 166.50

15 178.06 168.38 166.23 167.00 168.92 165.30

16 177.86 167.40 166.17 166.65 167.74 165.14

17 177.31 167.01 166.01 166.29 166.91 164.95

18 176.72 166.85 165.69 165.84 164.86

19 176.67 166.76 165.46 165.64 164.80

20 176.56 165.34 165.49

21 165.29 165.38

®Number of independent control design variables.
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Fig. 5 Number of CDVs vs final masses, antenna structure.

Grillage Structure

Fig. 6 Grillage structure.
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Table 7 Final structural designs, antenna structure, cases 11-20 (cross sectional-dimensions, cm)

Element Element Elements Elements Elements Element Element Elements Elements Elements

Case 1 2 3,4 5,6 7,8 Case 1 2 3,4 5,6 7,8

B 25.002 25.002 18.99 25.002 14.13 25.002 25.002 13.02 25.002 24.32
H 11 25.002 25.002 25.002 25.002 25.002 16 25.002 25.002 24.12 24.93 25.002
T 0.1777 0.1149 0.1000Y 0.2835 0.1000° 0.1000V 0.1341 0.1000b 0.2082 0.1000v

B 25.002 25.002 19.57 25.002 25.002 25.002 25.002 13.64 25.002 24.70
H 12 25.002 25.002 25.002 22.84 22.14 17 25.002 25.002 24.06 25.002 25.002
T 0.1687 0.1361 0.1000° 0.2032 0.1000Y 0.1000P 0.1289 0.1000b 0.2061 0.1000°
B 25.002 25.002 13.22 25.002 25.002 25.002 25.002 15.33 25.002 25.002
H 13 25.002 25.002 25.002 23.70 24.65 18 25.002 25.002 23.14 25.002 25.002
T 0.1239 0.1259 0.1000V 0.2271 0.10000 0.10000 0.1213 0.1000b 0.2047 0.1000°

B 25.002 25.002 22.11 25.002 20.00 25.002 25.002 14.99 25.002 24.29
H 14 25.002 25.002 25.002 25.002 25.002 19 25.002 25.002 23.31 25.002 25.002
T 0.1000 0.1021 0.1000V 0.2256 0.1000 0.1000P 0.1186 0.1000V 0.2084 0.1000°

B 25.002 25.002 19.45 25.002 21.32 25.002 25.002 14.91 25.002 24.62
H 15 25.002 25.002 24.70 25.002 25.002 20 25.002 25.008 22.93 25.002 25.002
T 0.10000 0.1051 0.1000b 0.2246 0.1000b 0.1000° 0.1205 0.1000 0.2054 0.1000P

2Upper bound value.

bLower bound value.

Table 8 Critical constraints at the final designs, antenna structure

Critical? constraints

Case Final Peak Peak N =0 + jod, (i, %)
number mass, kg Re (\) Im(\) displacement control force -
0 163.11 g10 wd q10 416 Uy U2 U3 Us Mode
1 206.06 e wd: Py Ua number Open loop
2 190.70 0809  Wd, Wds q16 us 1 —0.0001 % ;2.29 (0.006)
3 189.81 040809 wd,wd, 16 ug 2 —0.001 = 77.05 (0.018)
4 172.46 030408 w4, qi6 Uy 3 —0.007 =7 16.4 (0.041)
5 172.32 030408  wd, q16 Us 4 —0.009 +18.6 (0.047)
6 172.17 a8 wd, qi6 Uy 5 —0.018 £ j27.1 (0.069)
7 171.73 o8 wd, q16 U3 Us 6 —0.039 £ 39.5 (0.099)
8 170.81 o Wd, Wds qi6 U3 ug 7 —0.040 = 39.9 (0.100)
9 170.77 0708 Wd,Wds qi6 us us 8 —0.062 x j49.7 (0.124)
10 170.92 —_— Wd, qi6 u3 ug 9 —0.091 +j60.2 (0.150)
11 204.16 —_— wd, qie6 U3 Uy 10 —0.119 + j68.9 (0.172)
12 185.09 0809  Wd, Wds g6 Uy 11 —0.135 £ j73.6 (0.184)
13 176.56 040809 Wd,Wds q16 Uy 12 —0.146 = j76.5 (0.191)
14 170.37 a3 wd, q16 us4 13 —0.231 % j96.0 (0.240)
15 169.55 a4 08 wd, q16 Uy 14 —0.267 +j103.0 (0.259)
16 166.76 030408 Wd, Wds q16 U3 Ug 15 —0.281 % j106.0 (0.265)
17 166.01 0304 W4, Wds qi6 U3 Us 16 —0.316 = j112.0 (0.281)
18 165.29 o4 Wd, Wds qi6 Uy U3 Usg 17 —0.353 +;119.0(0.297)
19 165.38 040708 Wd, ¥ds q16 u3 Ug 18 —0.413 = j129.0 (0.321)
20 164.80 0407 W4, @ds qi6 Uy U3 Us 19 —0.505 + j142.0 (0.355)
20 —0.524 : j145.0 (0.362)

#-0.03< G; < 0.0004 (Gj are normalized by the allowable values).

Table 9 Initial complex eigenvalues, grillage structure

Closed loop

—0.874 +2.31 (35.4)
~0.431 +7.06 (6.09)
—1.87 +£,17.3 (10.8)

~0.762 +17.6 (4.33)

~1.36 +,27.2 (5.00)

~0.878 +739.9 (2.20)

—2.00 £40.1 (4.97)
~3.76 +j49.2 (7.64)
—1.90 +j60.1 (3.15)
—2.01 +,69.0 (2.92)
—2.58 £ /74.0 (3.49)

—0.840 +;75.6 (1.11)

~2.03 +/95.8 (2.11)

~1.39 + 7103.0 (1.35)
~2.26 £/106.0 (2.13)
—1.41 + j112.0 (1.26)
~2.04 +119.0 (1.72)
—1.66 128.0 (1.29)
—2.81 +;142.0 (1.98)
—1.65 +£,145.0 (1.14)
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Table 10 Independent control design variables (CDV), grillage structure

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
CDhV o= " = Qs Ql, = """ = Qs @l, 0, oL, "t 0, ap, t T L0, a1, "t ,09,
Q3= "' = 025 Qs = " =05 Q= °*° = Q5 Q0= "' =05
Number of
independent CDVs 1 2 3 5 10 20
Table 11 Final structural design variables, grillage structure (depth, cm)
Design variable
number 1 2 3 4 5 6 7 8
Case 1 0.2849 0.1698 0.10002 0.1953 0.1502 0.3656 0.2299 0.4724
Case 2 0.2768 0.1806 0.10002 0.1973 0.1479 0.3626 0.2180 0.5021
Case 3 0.2510 0.1936 0.10002 0.1769 0.1429 0.3670 0.2221 0.4951
Case 4 0.2392 0.1985 0.10002 0.1788 0.1373 0.3691 0.2222 0.4719
Case 5 0.2557 0.1191 0.10002 0.1908 0.10002  0.3701 0.1622 0.5880
Case 6 0.2466  0.1125  0.10002  0.1560  0.10002 0.4128  0.1137  0.5573
aLower bound value.
Table 12 Iteration histories, grillage structure, cases 1-6 0.154
total mass (Ib - s2/in.) . -~ Case 1 (1 COV)
Casel Case2 Case3 Case4 Case5 Case6 ,
Analysis 12 (22) 3% (5?) 109 (209 = o -a- Case 2 (2 CDV's)
1 0.1294 0.1294 0.1294 0.1294 0.1294 0.1294 = -v- Case 3 (3 CDV's)
2 0.1448 0.1433 0.1440 - 0.1442 0.1442 0.1468 g
3 0.1332  0.1327 0.1369 0.1353 0.1352 0.1366 » — Case 4 (5 CDV's)
4 0.1272  0.1295 0.1317 0.1258 0.1261 0.1298 _'Q 0.134
5 0.1231 0.1256 0.1238 0.1222  0.1257 0.1223 = 7w e Case 5 (10 CDV's)
6 0.1211 0.1247 0.1206 0.1212 0.1215 0.1168 (24 }
7 0.1211 0.1200 0.1185 0.1197 0.1182 0.1163 o -~ Case 6 (20 CDV's)
8 0.1198  0.1189 0.1172 0.1178 0.1170  0.1139 = g
9 0.1192 0.1189 0.1166 0.1170 0.1145 0.1114 0>J
10 0.1192 0.1188 0.1172 0.1174 0.1136 0.1103 =
11 0.1194 0.1173  0.1173  0.1126 0.1103 g
12 0.1191 0.1172  0.1171  0.1111  0.1089 = 01-
13 0.1191 0.1177 0.1162 0.1107 0.1088 o
14 0.1173  0.1162 0.1111 0.1080
15 0.1168 0.1162 0.1099 0.1065
E ol ols olon 0100 T
18 0.1169 0.1159 0.1093  0.1044 0 S 10 19 20 5 50
19 0.1160  0.1091 0.1039 i
20 0.1158 0.1091 0.1036 Number Of Ana|y3|s
21 0.1157 0.1093 0.1042 Fig. 7 Grillage structure iteration histories, cases 1-6.
22 0.1157 0.1083  0.1041
23 0.1080 0.1040
24 0.1082  0.1039 limits on the member depths are 0.1 and 1.0 in., respectively.
25 0.1083 In this example behavior constraints are imposed on 1) the
%g giggg modal damping factors of the first 20 modes (& = 1%,

*Number of independent control design variables.

the directions shown in Fig. 6. The mass of each actuator
(1.296 x 103 1b - s¥/in.) is modeled as a fixed nonstructural
mass. Initial control gains are obtained by solving 25 sets of
2 x 2 decoupled Riccati equations with diagonal control
weighting matrices [R;] = 1/200 diag[2, 2, 1, 1] and diagonal
2% 2 state weighting matrices [Q;] = diag(w?, 1),
i=1,...,25 [see Eq. (15)]. Initial open-loop and closed-loop
eigenvalues are given in Table 9. Transient responses are con-
sidered for a time period 0 < ¢ < 3 s, and the lowest 40 out of
144 complex modes are used.

The total mass is minimized subject to a transient loading at
node 3 in the ¥ direction, which is a half-sine pulse of magni-
tude 0.2 1b and frequency 7 rad/s. Structural design variable
linking is used to impose symmetry with respect to the XY
plane on the structure and as a result there are eight indepen-
dent structural design variables (see Fig. 6). Lower and upper

i=1,...,20); 2) the transient displacements at nodes 1-6, 7,
13, 19, 12, 18, and 24 in the Y direction [i.e., g(¢) = 0.2 in.];
and 3) the transient control torques of all actuators [u(¢)
< 2.51b-in.].

At the initial structural and control design, all of the damp-
ing ratio and control force constraints are satisfied, but transi-
ent displacement constraints are infeasible by as much as 68%.
Hybrid approximation in terms of depths of the members and
linear approximation in terms of the control design variables
are used to generate approximate optimization problems.

In this example, the number of elements in the feedback
gain matrix is very large (M X 2N =4 X 2-72 = 576), so that
it is almost impossible to use all of the gain elements directly
as independent design variables. Six cases are investigated that
are similar to cases 1-10 of the preceding example, namely, the
participation coefficients o; of [H°]? [see Eq. (26)] are control
system design variables. These o; are further linked so that in
each case the number of independent control design variables
is different (see Table 10).

Final member depths are given in Table 11. In all cases the
depth of member 3 (node 13-18) has its lower bound value,
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and in cases 5 and 6 depths of members 5 (node 1-19) and 10
(node 6-24) also have lower bound values in addition to mem-
ber 3. Iteration histories are given in Table 12 and also shown
graphically in Fig. 7. In Fig. 8 final mass values of the six cases
are compared with the number of independent control design
variables. Similar observations as in the first example can be
made, namely, as the number of independent control design
variables is increased from 1 to 20, the final objective mass
value decreases (from 0.1191 to 0.1039, a 12.8% reduction),
but the total number of analyses required for the convergence
tends to increase. The final closed-loop complex eigenvalues
and modal damping factors are given in Table 13.
In all of the cases transient displacement constraints at node
ﬂ 1 and transient control force constraints on actuators 3 and 4
are active at the final design in addition to the critical damping

Fig. 8

123 %

Number of Independent CDV’s

Number of CDVs vs final masses, grillage structure.

10

20 ratio constraints (see Table 13).

VII. Conclusion

It is shown that the design variable linking concept can be
extended to control system design variables. In the context of

Table 13 Final closed-loop eigenvalues, grillage structure

A =0 + jwg; (£, )

Mode
number Case 1 Case 2 Case 3 Case 4 Case S Case 6
1 —1.58 +/4.85 —1.62 +j5.03 —1.89+/5.14 ~2.08 £/5.19 —2.22+j592 —1.85+/6.56
(30.9) (30.7) (34.4) (37.1) (35.1) 27.1)
2 —0.438 +9.76 —-0.321 +;9.93 —0.103 =,;9.90 —0.998E - 01'+,/9.76 —0.115+/10.5 -0.112 +10.7
(4.49) (3.23) (1.04) (1.02%) (1.09) (1.05)
3 —2.26 +,20.4 -1.75x+,204 —2.36 +,20.0 —-104+,199 —1.16 +,22.2 ~0.209 +20.3
(11.0) (8.53) 11.7) (46.2) - (5.21) (1.03%)
4 —1.53+524.7 —~1.08+,25.4 —2.10 +;24.7 ~1.44 £22.0 —4.02x+/22.6 —-6.55+j22.2
6.17) (4.25) (8.50) (6.55) (17.5) (28.3)
5 —2.53 +730.5 —2.08 =531.0 —-2.58 +/29.9 —2.71 £530.0 —1.92 +/28.6 —0.724 £ j26.2
(8.26) (6.70) (8.58) (9.01) (6.70) . 2.77)
6 —0.415 +j38.9 —0.404 = j39.6 —0.423 + j38.7 —0.384 +38.1 —0.397 £,37.0 —11.4 +£/35.1
(1.06) (1.023), (1.09) (1.019) (1.07) (30.9)
7 —2.24 +j40.1 —1.96 +39.9 —-2.62+39.2 —2.01 +,38.8 —1.27 +j38.6 —0.605 +/35.4
(5.59) (4.91) (6.66) (5.19) (3.30) (1.71)
8 —1.36 +50.7 —1.87 £j51.5 —15.5+j47.9 —13.7 £ j48.3 —12.0+/45.8 —0.397 +£537.3
(2.68) (3.63) (30.7) (27.2) (25.4) (1.07)
9 —15.4+551.7 —10.9 +;53.2 —2.44 +j51.2 —-2.24 +750.5 —0.534 +j48.3 ~0.666 + j44.3
(28.6) 20.1) 4.75) (4.42) (1.10) (1.50)
10 —2.49 +j55.1 —1.98 = ;54.9 —3.14+j52.3 —-3.07 £j51.7 —0.615 = j48.7 —-0.479 £ 479
4.51) (3.60) (5.99) (5.92) (1.26) (1.00%)
11 —1.14+j62.4 —0.674 % j63.6 —0.995 +62.3 —0.627 £ j61.8 —0.525 £j52.2 ~0.496 + j48.4
(1.83) (1.06) (1.60) (1.023) (1.00%) (1.02%)
12 ~0.634 +j63.3 —0.638 £ 763.9 —0.625 + j62.3 —-0.948 £ j62.7 —0.648 + j56.1 —0.539 xj52.8
(1.00%) (1.002) (1.002) (1.51) (1.15) (1.022)
13 ~3.38+,74.1 —-2.56x;75.0 —2.54 %740 —2.23+572.7 —3.55+/65.0 ~1.93 +£j54.6
(4.55) (3.40) (3.42) (3.06) (5.45) (3.54)
14 —0.944 + j93.1 —0.934 % j91.7 —0.975 +j88.5 —0.881 =+ 86.6 —-0.749 £ j72.7 —3.35+/66.1
(1.013) (1.023) (1.10) (1.023) (1.03%) (5.06)
15 ~17.5+/j97.6 —11.8 +,100.0 —-20.7 %j95.4 —-19.4 +£96.7 —2.08+/77.5 —37.0+£/66.3
17.7) (11.7) 21.2) (19.7) (2.68) (48.8)
16 —2.26 +104.0 ~2.88 +£101.0 —3.96 799.3 —2.12+j97.2 —-2.63£/579.0 —-0.742 £ j71.9
(2.16) (2.85) (3.99) 2.19) (3.32) (1.03%)
17 —~3.28 +/105.0 —4.61 xj105.0 —-2.13+/99.9 ~3.81x,98.4 —12.6 +j85.6 —7.59+/75.7
3.12) (4.40) (2.13) (3.87) (14.5) 9.97)
18 ~2.67 +£106.0 ~1.08 +5105.0 —1.04 +101.0 —0.986 + j98.7 —1.62 %99.0 —1.04 £/90.5
2.51) (1.033) (1.033) (1.00%) (1.63) (1.15)
19 —1.21 £/120.0 -1.24 +4121.0 —-1.20x+/119.0 —-1.19x/117.0 -2.36 £/110.0 ~135£/95.1
(1.013) (1.033) (1.01®) (1.012) (2.15) (1.42)
20 —1.43 £/142.0 ~1.49 +j140.0 —1.36 +,135.0 ~1.40 £;135.0 —1.33+/133.0 —1.34 £ j131.
(1.013) (1.06) (1.00%) (1.04) (1.00%) (1.02%)

“3Critical damping ratio constraints (0.999 =<'t <1.03).
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full-state feedback control, design variable linking makes it
possible to treat structural design variables and control design
variables simultaneously without having to deal with pro-
hibitively large numbers of design variables (see example 2,
which has 576 possible control variables).

A new block-type control design variable linking scheme
based on representing the feedback gain matrix [H] (or [H,]
and [H,]) as the linear combination of r ‘‘basis matrices”’
corresponding to different modes is introduced. This linking
scheme is based on calculation of the initial feedback gain
matrix by solving r sets of 2 X 2 Riccati equations. The solu-
tion of each 2 x 2 Riccati equation depends on the corre-
sponding modal information and contributes a component
matrix [H°)? (or [HJ]® and [H?]) to the initial gain matrix.
Each component matrix obtained is treated as a basis in this
control design variable linking scheme, and the actual feed-
back gain matrix is then expressed as a linear combination of
these basis matrices, i.e.,

r

[Hl= Y o[H®
or "

,

H]= Y [ai[HI‘,’l(’7 ozi+,[Hé’]"’}

i=1
During optimization the participation coefficients («;) of the
basis matrices are treated as independent design variables
along with the cross-sectional dimensions of the structural
elements.

Numerical results for various example problems show that
the new linking scheme is superior to previously reported
control design variable linking arrangements, based on vari-
ous column-wise and row-wise linking strategies (see example
1). The new linking scheme improves performance in the sense
that for any fixed number of independent control design vari-
ables it leads to designs with significantly lower mass than
those achieved by using the row and column linking schemes
reported in Ref, 12.
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